2025[1]A. Rusanova, V. Mamontov, M. Ri, D. Meleshko, A. Trofimova, Victor Fedorchuk, M. Ezhova, Y. Lyupina, A. Finoshin, A. Isaev, D. Sutormin, Taxonomically different symbiotic communities of sympatric Arctic sponge species show functional similarity with specialization at species level, BioRxiv 2025.03.15.643485 (2025). https://doi.org/10.1101/2025.03.15.643485[2]Drobiazko, A., Adams, M. C., Skutel, M., Potekhina, K., Kotovskaya, O., Trofimova, A., ... & Isaev, A., Molecular basis of foreign DNA recognition by BREX anti-phage immunity system. Nature communications, 16(1), 1825 (2025). https://doi.org/10.1038/s41467-025-57006-2[3]Belukhina, S., Saudemont, B., Depardieu, F., Lorthios, T., Maviza, T. P., Livenskyi, A., ... & Rouillon, C., Specificity and Mechanism of tRNA cleavage by the AriB Toprim nuclease of the PARIS bacterial immune system. bioRxiv, 2025-02 (2025). https://doi.org/10.1101/2025.02.04.636281[4]Taranenko, D., Kotovskaya, O., Kuznedelov, K., Yanovskaya, D., Demkina, A., Fardeeva, S., ... & Isaev, A., A census of anti-CRISPR proteins reveals AcrIE9 as an inhibitor of Escherichia coli K12 Type IE CRISPR-Cas system. bioRxiv, 2025-05 (2025). https://doi.org/10.1101/2025.05.07.6527372024[1] R. A. Nicholls, H. Morgan, A. J. Warren, S. E. Ward, Fei Long, G. N. Murshudov, D. Sutormin, B. D. Bax, How Do Gepotidacin and Zoliflodacin Stabilize DNA-Cleavage Complexes with Bacterial Type IIA Topoisomerases? 2. A Single Moving Metal Mechanism, Int. J. Mol. Sci 26 (2025). https://doi.org/10.3390/ijms26010033[2]A. Galivondzhyan, D. Sutormin, V. Panteleev, A. Kulbachinskiy, K. Severinov, The role of prokaryotic argonautes in resistance to type II topoisomerases poison ciprofloxacin, Biochem Soc Trans 52 (5) (2024). https://doi.org/10.1042/BST20240094[3]Karneyeva, K., Kolesnik, M., Livenskyi, A., Zgoda, V., Zubarev, V., Trofimova, A., ... & Severinov, K, Interference Requirements of Type III CRISPR-Cas Systems from Thermus thermophilus, Journal of Molecular Biology, 436(6), 168448 (2024). https://doi.org/10.1016/j.jmb.2024.168448[4]Kolesnik, M., Pavlov, C., Demkina, A., Samolygo, A., Karneyeva, K., Trofimova, A., ... & Severinov, K, New viruses infecting hyperthermophilic bacterium Thermus thermophilus. Viruses, 16(9), 1410 (2024). https://doi.org/10.3390/v16091410[5]Jain, I., Kolesnik, M., Kuznedelov, K., Minakhin, L., Morozova, N., Shiriaeva, A., ... & Semenova, E., tRNA anticodon cleavage by target-activated CRISPR-Cas13a effector, Science advances, 10(17), eadl0164 (2024). https://doi.org/10.1126/sciadv.adl0164[6]Skutel, M., Yanovskaya, D., Demkina, A., Shenfeld, A., Musharova, O., Severinov, K., & Isaev, A., RecA-dependent or independent recombination of plasmid DNA generates a conflict with the host EcoKI immunity by launching restriction alleviation. Nucleic acids research, 52(9), 5195-5208 (2024). https://doi.org/10.1093/nar/gkae243[7]Burman, N., Belukhina, S., Depardieu, F., Wilkinson, R. A., Skutel, M., Santiago-Frangos, A., ... & Isaev, A., A virally encoded tRNA neutralizes the PARIS antiviral defence system. Nature, 634(8033), 424-431(2024). https://doi.org/10.1038/s41586-024-07874-3[8]Iarema, P., Kotovskaya, O., Skutel, M., Drobiazko, A., Moiseenko, A., Sokolova, O., ... & Isaev, A., Sxt1, Isolated from a Therapeutic Phage Cocktail, Is a Broader Host Range Relative of the Phage T3. Viruses, 16(12), 1905 (2024). https://doi.org/10.3390/v16121905[9]Wang, C., Molodtsov, V., Kaelber, J. T., Blaha, G., & Ebright, R. H., Structural basis of long-range transcription-translation coupling. BioRxiv, 2024-07 (2024). https://doi.org/10.1101/2024.07.20.6044132023[1] D.Y. Travin, R. Jouan, A. Vigouroux, S. Inaba-Inoue, J. Lachat, F. Haq, T. Timchenko, D. Sutormin, S. Dubiley, K. Beis, S. Moréra, K. Severinov, P. Mergaert, Dual-Uptake Mode of the Antibiotic Phazolicin Prevents Resistance Acquisition by Gram-Negative Bacteria, MBio 14 (2023) e00217-23. https://doi.org/10.1128/mbio.00217-23.[2] D. Sutormin, A. Galivondzhyan, A. Gafurov, K. Severinov, Single-nucleotide resolution detection of Topo IV cleavage activity in the Escherichia coli genome with Topo-Seq, Front. Microbiol. 14 (2023) 1160736. https://doi.org/10.3389/fmicb.2023.1160736.[3] A. Olina, A. Agapov, D. Yudin, D. Sutormin, A. Galivondzhyan, A. Kuzmenko, K. Severinov, A.A. Aravin, A. Kulbachinskiy, Bacterial Argonaute Proteins Aid Cell Division in the Presence of Topoisomerase Inhibitors in Escherichia coli, Microbiol Spectr 11 (2023) e04146-22. https://doi.org/10.1128/spectrum.04146-22.[4] A.A. Kudryavtseva, E. Cséfalvay, E.Y. Gnuchikh, D.D. Yanovskaya, M.A. Skutel, A.B. Isaev, S.V. Bazhenov, A.A. Utkina, I.V. Manukhov, Broadness and specificity: ArdB, ArdA, and Ocr against various restriction-modification systems, Front. Microbiol. 14 (2023) 1133144. https://doi.org/10.3389/fmicb.2023.1133144.[5] Moscow State Academy of Veterinary Medicine and Biotechnology – MVA n. a. K.I. Skryabin, R.G. Aksenov, A.V. Komissarova, Financial University under the Government of the Russian Federation, M.A. Skutel, Skolkovo Institute of Science and Technology, A.B. Isaev, Skolkovo Institute of Science and Technology, Genomic variants’ analysis of Escherichia coli K-12 cells resistant to phage T7 infection, P&FPE 16 (2023) 3–12. https://doi.org/10.17586/2310-1164-2023-16-2-3-12.[6] A. Kelly, S.C. Went, G. Mariano, L.P. Shaw, D.M. Picton, S.J. Duffner, I. Coates, R. Herdman-Grant, J. Gordeeva, A. Drobiazko, A. Isaev, Y.-J. Lee, Y. Luyten, R.D. Morgan, P. Weigele, K. Severinov, N. Wenner, J.C.D. Hinton, T.R. Blower, Diverse Durham collection phages demonstrate complex BREX defense responses, Appl Environ Microbiol 89 (2023) e00623-23. https://doi.org/10.1128/aem.00623-23.[7] A. Andriianov, S. Trigüis, A. Drobiazko, N. Sierro, N.V. Ivanov, M. Selmer, K. Severinov, A. Isaev, Phage T3 overcomes the BREX defense through SAM cleavage and inhibition of SAM synthesis by SAM lyase, Cell Reports 42 (2023) 112972. https://doi.org/10.1016/j.celrep.2023.112972.[8] V.S. Mihailovskaya, D.A. Sutormin, M.O. Karipova, A.B. Trofimova, V.A. Mamontov, K. Severinov, M.V. Kuznetsova, Bacteriocin-Producing Escherichia coli Q5 and C41 with Potential Probiotic Properties: In Silico, In Vitro, and In Vivo Studies, IJMS 24 (2023) 12636. https://doi.org/10.3390/ijms241612636.[9] D. Antonova, V.V. Belousova, E. Zhivkoplias, M. Sobinina, T. Artamonova, I.E. Vishnyakov, I. Kurdyumova, A. Arseniev, N. Morozova, K. Severinov, M. Khodorkovskii, M.V. Yakunina, The Dynamics of Synthesis and Localization of Jumbo Phage RNA Polymerases inside Infected Cells, Viruses 15 (2023) 2096. https://doi.org/10.3390/v15102096.[10] M. Skutel, A. Andriianov, M. Zavialova, M. Kirsanova, O. Shodunke, E. Zorin, A. Golovshchinskii, K. Severinov, A. Isaev, T5-like phage BF23 evades host-mediated DNA restriction and methylation, MicroLife 4 (2023) uqad044.https://doi.org/10.1093/femsml/uqad044.[11] P. Muzyukina, A. Shkaruta, N.M. Guzman, J. Andreani, A.L. Borges, J. Bondy-Denomy, A. Maikova, E. Semenova, K. Severinov, O. Soutourina, Identification of an anti-CRISPR protein that inhibits the CRISPR-Cas type I-B system in Clostridioides difficile, MSphere 8 (2023) e00401-23.https://doi.org/10.1128/msphere.00401-23.[12] A. Demkina, D. Slonova, V. Mamontov, O. Konovalova, D. Yurikova, V. Rogozhin, V. Belova, D. Korostin, D. Sutormin, K. Severinov, A. Isaev, Benchmarking DNA isolation methods for marine metagenomics, Sci Rep 13 (2023) 22138. https://doi.org/10.1038/s41598-023-48804-z.2022[1]Alfi, A., Popov, A., Kumar, A., Zhang, K. Y. J., Dubiley, S., Severinov, K., & Tagami, S. (2022). Cell-Free Mutant Analysis Combined with Structure Prediction of a Lasso Peptide Biosynthetic Protease B2. ACS Synthetic Biology, 11(6), 2022–2028. https://doi.org/10.1021/acssynbio.2c00176[2]Bikmetov, D., Hall, A. M. J., Livenskyi, A., Gollan, B., Ovchinnikov, S., Gilep, K., Kim, J. Y., Larrouy-Maumus, G., Zgoda, V., Borukhov, S., Severinov, K., Helaine, S., & Dubiley, S. (2022). GNAT toxins evolve toward narrow tRNA target specificities. Nucleic Acids Research, 50(10), 5807–5817. https://doi.org/10.1093/nar/gkac356[3]Fraser, A., Sokolova, M. L., Drobysheva, A. V., Gordeeva, J. V., Borukhov, S., Jumper, J., Severinov, K. V., & Leiman, P. G. (2022). Structural basis of template strand deoxyuridine promoter recognition by a viral RNA polymerase. Nature Communications, 13(1), 3526. https://doi.org/10.1038/s41467-022-31214-6[4]Isaev, A., Andriianov, A., Znobishcheva, E., Zorin, E., Morozova, N., & Severinov, K. (2022). Editing of Phage Genomes—Recombineering-assisted SpCas9 Modification of Model Coliphages T7, T5, and T3. Molecular Biology, 56(6), 801–815. https://doi.org/10.1134/S0026893322060073[5]Lavysh, D., Mekler, V., Klimuk, E., & Severinov, K. (2022). Regulation of Gene Expression of phiEco32-like Bacteriophage 7-11. Viruses, 14(3), 555. https://doi.org/10.3390/v14030555[6]Mamontov, V., Martynov, A., Morozova, N., Bukatin, A., Staroverov, D. B., Lukyanov, K. A., Ispolatov, Y., Semenova, E., & Severinov, K. (2022). Persistence of plasmids targeted by CRISPR interference in bacterial populations. Proceedings of the National Academy of Sciences, 119(15), e2114905119. https://doi.org/10.1073/pnas.2114905119[7]Rahlff, J., Bornemann, T. L. V., Lopatina, A., Severinov, K., & Probst, A. J. (2022). Host-Associated Phages Disperse across the Extraterrestrial Analogue Antarctica. Applied and Environmental Microbiology, 88(10), e0031522. https://doi.org/10.1128/aem.00315-22[8]Rusanova, A., Fedorchuk, V., Toshchakov, S., Dubiley, S., & Sutormin, D. (2021). An Interplay between Viruses and Bacteria Associated with the White Sea Sponges Revealed by Metagenomics. Life (Basel, Switzerland), 12(1), 25.https://doi.org/10.3390/life12010025[9]Sharaev, N., Chacon-Machado, L., Musharova, O., Savitskaya, E., & Severinov, K. (2022). Repair of Double-Stranded DNA Breaks Generated by CRISPR–Cas9 in Pseudomonas putida KT2440. Molecular Biology, 56(6), 842–853. https://doi.org/10.1134/S0026893322060152[10]Yagmurov, E., Gilep, K., Serebryakova, M., Wolf, Y. I., Dubiley, S., & Severinov, K. (2022). S51 Family Peptidases Provide Resistance to Peptidyl-Nucleotide Antibiotic McC. MBio, 13(3), e0080522. https://doi.org/10.1128/mbio.00805-22